Acta Crystallographica Section A

Foundations of Crystallography

ISSN 0108-7673

Received 5 January 2006
Accepted 30 January 2006

On the symmetry of simple 16-hedra

Yury L. Voytekhovsky ${ }^{\text {a,b }}$ * and Dmitry G. Stepenshchikov ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratory for Mineralogy, Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia, and ${ }^{\mathbf{b}}$ Laboratory for Mathematical Investigations in Crystallography, Mineralogy and Petrography, High Technologies Centre, Kola Branch of Petrozavodsk State University, 14 Fersman Street, 184209 Apatity, Russia. Correspondence e-mail: voyt@geoksc.apatity.ru

Abstract

The symmetry point group statistics for all combinatorially non-isomorphic convex simple 16 -hedra (17490241 in total) are contributed in the paper for the first time. The most symmetrical polyhedra with 6 to 56 automorphism group orders (165 in total) are drawn in Schlegel diagrams and characterized by facet symbols and symmetry point groups.

(C) 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved
$1 ;\langle 56\rangle(14 / \mathrm{mmm}) 1$. As in the cases of 4 - to 12 - and simple 13 - to $15-$ hedra, the shapes of $1, m, 2$ and $m m 2$ symmetry point groups prevail among the simple 16 -hedra with the trivial shapes forming the overwhelming majority. The most symmetrical simple 16-hedra with 6 to 56 automorphism group orders are enumerated below. To lexicographically order them, we use the [facet symbols] meaning the numbers of $3-, 4-, \ldots, n$-gonal facets in a sequence.
[00,12,4] $\overline{4} 3 \mathrm{~m}: 1 ;[00,14,02] \overline{7} \mathrm{~m}: 2$; [02,12,002] $\mathrm{mmm}: 3 ;[0367] 3 \mathrm{~m}: 4 ;$ [0393001] 3m: 5; [0448] mmm: 6-8, $\overline{4} 2 \mathrm{~m}: 9-11 ;$ [04804] mmm: 12, $\overline{4} 2 \mathrm{~m}$: 13; [060,10] mmm: 14; [06343] 3m: 15-18; [0636001] 3m: 19; [064402] mmm: 20; [0660301] 3m: 21, 22; [066103] 3m: 23-25; [08044] mmm: 26, 4̄2m: 27-29; [080602] mmm: 30; [084004] $\overline{42 m: ~ 31-33 ; ~[08420002] ~}$ mmт: 34; [09016] 3m: 35; [0930031] 3m: 36; [0930300001] 3m: 37, 38; [0931003] 3m: 39, 40; [0,10,0042] mmm: 41, 42; [0,10,0204] mmm: 43; [0,10,040002] $\mathrm{mmm}: 44 ;[0,10,40000002] \mathrm{mmm}: 45 ;[0,12,00004] \overline{4} 2 \mathrm{~m}$: 46, $\overline{4} 3 \mathrm{~m}: 47 ;[0,14,0000000002] 14 / \mathrm{mmm}: 48 ;[1096] 3 \mathrm{~m}: 49$; [10,12,03] $3 \mathrm{~m}: 50$; [1339] 3m: 51; [13633] 3m: 52-56; [16063] 3m: 57-59; [16306] $3 m: 60$; [163303] 3m: 61, 62; [190033] 3m: 63; [1903003] 3m: 64; [303,10] 3m: 65; [3090301] 3m: 66, 67; [309103] 3m: 68, 69; [3093000001] 3m: 70; [33073] 3m: 71-73; [3309001] 3m: 74, 75; [33316] 3m: 76; [333403] 3m: 77, 78; [3360300001] 3m: 79; [3361003] 3m: 80; [360133] 3m: 81, 82; [3603031] 3m: 83; [3604003] 3m: 84-86; [3630004] $3 \mathrm{~m}: 87$; [36310003] 3m: 88; [390100003] 3m: 89, 90; [400,12] $\overline{4} 2 m: 91$, 23: 92; [40363] 3m: 93, 94; [40444] mmm: 95, 96, $\overline{42 m}: 97$; [40606] 3m: 98; [406303] 3m: 99, 100; [408004] mmm: 101, $42 \mathrm{~m}: 102$; [4090003] 3m: 103; [420802] mmm: 104; [43036] 3m: 105, 106; [430603] 3m: 107, 108; [433033] $3 m: 109-114$; [4333003] 3m: 115-118; [43600003] 3m: 119,
 [4600303] 3m: 128; [46030003] 3m: 129, 130; [4604000002] mmm: 131; [463000003] $3 m: 132$; [48000004] $\overline{4} 2 m: 133$; [60046] 3m: 134, 135; [603133] $3 m: 136,137 ;$ [6033300001] $3 m: 138 ;$ [6034003] 3m: 139; [60610003] $3 \mathrm{~m}: 140$; [630106] $3 m: 141$, 142; [6301303] $3 m: 143$; [63040003] 3m: 144; [6330003001] 3m: 145; [633100003] 3m: 146, 147; [700333] $3 \mathrm{~m}: 148-150$; [7006003] 3m: 151; [700710000001] 7m: 152; [703006] 3m: 153; [7030303] 3m: 154-156; [70330003] 3m: 157; [7300033] $3 m: 158,159 ;$ [73003003]_3m: 160; [8004004] $\overline{4} 2 m: 161$; [80040202] $\mathrm{mmm}: 162 ;$ [80400004] $\overline{42 m}: 163 ;$ [90013003] 3m: 164; [9003003001] 3m: 165.

The polyhedra are drawn in Schlegel diagrams with the numbers corresponding to the above list (Fig. 1). A projection is usually made along the main symmetry axis onto the orthogonal facet, if any. But it is difficult to draw the projections of 16 -hedra inside the 3 - or even 4 -gonal facets. In some cases, we drew Schlegel diagrams into one of

Figure 1
The most symmetrical simple 16-hedra in Schlegel diagrams.

short communications

the n-gonal facets with highest n preserving as much as possible of the symmetry. To easily understand any diagram, one should bear its facet symbol in mind and remember that only three edges meet at each vertex.

4. Conclusions

Up to now, all the varieties of 4 - to 12 - and simple 13- to 16 -hedra have been enumerated and characterized by facet symbols and symmetry point groups. The most symmetrical shapes are drawn in Schlegel diagrams. The next steps are to generate and characterize all not simple 13- and simple 17-hedra. Unfortunately, the available computer algorithms need an enormous length of time to do these.

The authors acknowledge great benefit from the comments made by the referee.

References

Engel, P. (2003). Acta Cryst. A59, 14-17.
Fedorov, E. S. (1893). Proc. R. Mineral. Soc. St Petersburg, 30, 241-341. (In Russian.)
Steinitz, E. (1922). Enzykl. Math. Wiss. 3, 101-102.
Steinitz, E. \& Rademacher, H. (1934). Vorlesung uber die Theorie der Polyeder. Berlin: Springer-Verlag
Voytekhovsky, Y. L. (2001a). Acta Cryst. A57, 112-113.
Voytekhovsky, Y. L. (2001b). Acta Cryst. A57, 475-477.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2002a). Acta Cryst. A58, 404-407.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2002b). Acta Cryst. A58, 502-505.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2003a). Acta Cryst. A59, 195-198.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2003b). Acta Cryst. A59 367-370.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2005). Acta Cryst. A61, 581-583.

